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The problem of determining the plane airfoil which has the minimum wave drag in a uniform supersonic free stream is considered. 
The length, thickness, angle of attack, lift force and moment of the airfoil with respect to the origin of coordinates are assumed 
to be given. The consideration is confined to the class of bodies for which attached shock waves occur. It is assumed that the 
flow is supersonic and there are no internal shock waves in the regions where the flow is affected by the components of the required 
contour. Numerical re~,~ults are given. @ 1997 Elsevier Science Ltd. All fights reserved. 

The following variational problem was considered in a previous paper [1]: of all the airfoils of specified 
thickness in a uniJ!orm supersonic free stream with a specified angle of attack it is required to obtain 
the one which has 1the minimum wave drag. The solution of the problem was sought in the class of airfoils 
for which attached shock waves occur, while the flow is supersonic and there are no internal shock waves 
in the regions in which the flow is affected by the generatriees of the airfoil. The necessary conditions 
for an extremum were derived and calculations were carried out for airfoils having two negative sharp 
bends and angles of attack for which Prandtl-Mayer flow occurs in the neighbourhood of the leading 
sharp edge from the windward side. 

The difference between the present paper and [1] is as follows. First, we consider here the case 
of low angles of attack, i.e. those for which in the neighbourhood of the leading sharp edge attached 
shock waves occur both from the windward and leeward edges. Second, we take into account, as 
additional isoperimetric conditions, the lift force and the moment of the airfoil with respect to the 
origin of coordinaltes. Third, the necessary conditions for the functional to have an extremum are written 
for an airfoil with newly introduced negative sharp bends at the points E1 andE2 (Fig. 1) (in [1] sharp 
bends were only assumed at the points D1 and D2). The introduction of additional sharp bends in the 
airfoil is important for the new formulation of the problem. As numerical calculations showed, it is 
impossible to satisfy all the necessary conditions for an extremum on an airfoil which has sharp bends 
only at the point,,; D 1 and D2. A consideration of this problem in model form [1] also leads to this 
conclusion. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We consider the problem of determining the plane airfoilAD1E1BE2Dr4 (Fig. 1) having minimum 
wave drag in a supersonic flow of a perfect gas. We will assume that in the regions R1 and R2 where the 
flow and the airfoil influence one another the flow is supersonic and there are no internal shock waves, 
that the generated head shock wavesAC1 andAC2 are attached and that the specified maximum thickness 
of the airfoil T, measured in a direction perpendicular to the chordAB (the length of the section E1E2), 
is reached at a single (but not definite) position of the points E1 and E2. In addition, the required airfoil 
must have a spec:ified length and specified angle of attack and must, in general, have specified values 
of the lift force and moment about the point A. (Some of these constraints may be ignored when solving 
specific problems.) 

In Fig. 1 (in addition to the lines mentioned) mn is a streamline and all the remaining lines are 
characteristics of the first or second families. The free stream is parallel to the x axis. We will assume 
that the origin of Cartesian coordinates (x, y) coincides with the point A. 

The following notation is used: u and v are the projections of the velocity vector onto the x and 
y axes, respectively, referred to the critical flow velocity a., p is the gas density referred to the gas density 
in the free stream p**,p is the pressure, referred to p~2,  ~ is the adiabatic index, tx is the Mach angle, 
0 is the angle between the velocity vector and the x axis, 7 is the angle of attack (the angle between the 
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Fig. 1. 

velocity vector of the unperturbed flow and the chord of the airfoilAB), (p is the entropy function and 
is the stream function, introduced in the usual way by the equation 

d ~  = pudy - p t d x  

where the value of ¥ will be assumed to be zero on the airfoil. The problem will be analysed in (x, ¥ )  
variables. 

The steady non-isentropic flow of a perfect gas in the regions R1 and R 2 is described by the following 
system of equations (the first of these is the equation of continuity and the second is the equation of 
conservation of momentum projected onto the y axis) 

q =o, 

u 2 +v 2 xp x+ 1 

2 ( x - l ) 9  2 ( x - l )  

av . ap 

p = 9"q)("-~)(¥) 

(1.1) 

The wave drag, the lift force and the moment of the airfoil with respect to the origin of coordinates 
are given by the following relations 

x(B) x(O) 
X =  I "{P[X, YI2(x)I'q'2(x) + p[x,l'll(x)]'q~(x)} dx, Y = I {P[x,1]2(x)]- P[x,1]l(X)]}dg 

x(h) x(a) 

x(B) 
M = ~ {p[x, rl2(x)]{x + rl2(X)~(x)]-  p{x,~l(x)][x + rh (x)rl;(x)]}dx 

x(a') 

(1.2) 

Here Ql(x) and 112(x) are functions describing the componentsADiE1B andAD2E2B of the airfoil in 
the (x, y) system of coordinates (here we assume that the lower part of the airfoil is reflected sym- 
metrically in the x axis). 

Since the coordinates of the point B are specified (Fig. 1) (for fixed coordinates of the point A, 
specifying the coordinates of the point B is equivalent to specifying the length of the airfoil I A B  I and 
the angle of attack y), the required functions lh(x) and ~2(x) must satisfy the isoperimetric conditions 

x(B) x(B) 
r~ = I 1] ' l (x)dx-y fB)=O,  r2 = I "q'2(x)dx+y (B)=O (1.3) 

x(A) x(h) 
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By specifying the length of the section E1E 2 (the maximum thickness of the airfoil T) we obtain the 
isoperimetric condiition and the final relation 

x(Ei) x(E2) 
r~ = ~ rl;(x)dx+ ~ rl~(x)dx=Tcos'/, r4=x(El) -x(E2)=Tsin~ (1.4) 

x(A) x(A) 

The following impermeability conditions hold along the components of the aiffoilADiEiB andAD2E2B 

I . ) [X , I~ i (X)] /U[X,1] i (X)] - -TI~(X) :=O,  i=1 ,2  (1.5) 

while along the linesACi the following relations for the parameters of the flow in front of the shoekwave 
and behind it hold 

K[i)  = __v xi" "t 1 __1  = O, K~ i) = P - p** + u - w .  = O, 
u p u w ~  w ~  

g~ i) = (p .  - p)x" i +v = 0 (1.6) 

Relations (1.6) are the conditions on the discontinuities for the gas-dynamics equations written in 
(x, ¥ )  variables. The first of these corresponds to the equation of continuity while the second and third 
are the equation of conservation of momentum projected onto the x and y axes, respectively. Here w 
= 4(u 2 + v 2) is the modulus of the velocity, the subscript oo denotes free-stream quantities and xi(¥) 
defines the line ACi in the (x, ¥)  plane. 

The variational problem is formulated as follows: for a specified free-stream it is required to find 
the functions rh(x ) and TI2(x) which satisfy conditions (1.3) and (1.4) and which minimize the  first 
functional (1.2) for given values of the second and third functionals (1.2), when the differential relations 
(1.5) are satisfied on the linesAD~-tB, relations (1.6) on the linesACi, and relations (1.1) in the regions 
Ri (i = 1, 2). 

2 THE NECESSARY C O N D I T I O N S  FOR O P T I M A L I T Y  

Denoting the constant multipliers by ¢~0, Ix0, ~tl, Ix2, ~. and the variable multipliers by e/, o/t, hi, h2, we 
can write the Lagrange functional as follows: 

1 X+ooY+ktoM+khr I +lx2r2 +Lrs+ 

2 [x(B, F v l  ~(ci,3 i,d~ } ÷2,=, l ,.,.,,=,I + 

+ II [hl(x,V)t~+h~(x,~,ltalaxdv 
RIoR2 

Here we have assumed a discontinuity in the multipliers hi and h2 along the characteristics E.~i , CiDi 
and F.tDi. 

Using the method developed in [2-7], we can obtain the first variation of the functional/, and by 
equating this to zero we obtain the necessary conditions for an extremum. These conditions have the 
following form. 

In the regions of influence R1 and R2 the variable Lagrange multipliers hi and h2 are found from the 
following system of partial differential equations 

a 2_,~2 ~h I v Oh I ^. Oh 2 = v Oh m 1 ~h I +Oh 2 pv oh2 
pu2cl 2 3x u 2 3~1/+ v" ~ 0, - (2.1) pua 2 ~x u ~11 3x ~ = 0 

where a = ~/(xp/p) is the velocity of sound. When w > a, this system is hyperbolic, has two families of 
characteristics, the directions of which coincide with the characteristic directions of system (1.1) and 
the compatibility conditions along which are represented in the form 

dh I T- g2dh2 = 0, g = ~/pu 2 tgot (2.2) 

(Here and everywhere below the upper sign corresponds to the characteristics of the first family while 
the lower sign corresponds to the characteristics of the second family.) 
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The multipliers h i and h 2 must satisfy the following conditions on the airfoil 

c~hi~x (x,O) = -~~P [1 + (-l)it't°rl']' h'x (x' O ) o x  = ~ + (-1)i[G° + l"t° (x + il' ~1] (2.3) 

The following condition must be satisfied on the closing characteristics CIB and C2B 

h I - g 2 h  2 = 0  (2.4) 

while on the characteristics along which discontinuities of the multipliers hi and h 2 are permitted, the 
values of the discontinuities are related by the equations 

/~lh I 4- g2/~b2 = 0 (2.5) 

The following equation must be satisfied along each streamline 

],,, ); [co:<'-x <", +v sin2  
Ou(i-p-~. / p)" + L xpu #x -~ dx J 

F ~khl . • cos (O -4- j ~ )  pAh2 t =  0 -'<''' + z  pa 
pa J. s s J 

w,(v), v(L~) < ~ ~< ~(C~) 

W~(V) = W,(V)+ Z~,, v(F~) < ~ ~< ~(/.,~) 

W.(~/)+Zz, +ZF,., 0~V~<¥(F/) 

',rr,, [ ] W.(~)= v L u- - ~  (p-p**) a~+ (p-p**)h2-Vhl Q" Z=(P-Po*)Ah2-VAhlu 

(2.6) 

In Eq. (2.6) the first term is calculated at the point m on the shock wave, the second is the integral 
along the streamline ran, the third is calculated at the point n on the closing characteristic, and the 
fourth at the points SF---points of intersection of the streamline mn with the lines of discontinuity 
of the multipliers. If the discontinuity propagates along the characteristic of the first family, we have 
j = 1, otherwisej = -1. 

The Weierstrass-Erdman conditions at the points of the sharp bends of the airfoil D1, De, E1 and E2 

HCl)(Go,l.to)t~ =0, H(2)(~,,l.to)q+ = H(2)()~,/.to)o: 

H(1)(-60,-go)02 = 0. H(2)(L,-go)oz+ = H(2)(~,-go)o z_ 

H°)(a0,g0)et + H0)(-Go,-/.to)~ = 0 

H(2)(L, go)et_ - H(2)(0,go)El+ = H(2)(2',-I-to)E2_ - H~2)(0,-go)e2+ 

close the system of necessary conditions, where 

v d v 
o+ dO).] 

H(2)( L, g0) = p(1 - g0Y) + )~ + hi 

and co is the angle of inclination between the characteristic pencil at the point of the sharp bend of the 
profile and thex axis (in thex, ¥ plane); the minus sign indicates the limiting value of a quantity when 
the point of the sharp bend is approached from the left, while a plus sign indicates the limiting value 
when approaching it from the fight. 
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From these nece~sary conditions, relations are obtained which will be used in the numerical algorithm. 
First, along the optimal closing characteristic C ~  the Lagrange multipliers must be determined from 
the formulae 

h I = c3g , h 2 = c a / g (2.7) 

while the values of the discontinuities of these multipliers along the discontinuity lines (on the 
characteristics) are related by the equations 

Ahl =~c4g, Ah2 =ca/g (2.8) 

where ca and c4 are constants [4-7]. 
Second, the equations 

hl(x, W) = i d-dp--~P. (t, W)[(-1)i-lgoy(t, ¥ ) -  lldt + hl(xn, V) 
at xn 

(2.9) 

are a solution of System (2.1) with boundary conditions (2.3) in the region P ~ f l  (i = 1, 2), which can 
be verified by dire~x substitution. Consequently, on the optimal characteristic PiB the following relation 
necessarily holds 

(2.10) 

The use of the compatibility condition for the flow parameters along the closing characteristic and 
of Eq. (2.10) enables us to obtain one other relation 

d,lp + g2IV + ( 0 0 +  go( x +Y v) ) (_ l ) i  ]}+ g2d[P.o(x+y v/ (_ l ) i  ] = 0 (2.11) 

If the amount of the airfoil is not specified (i.e. go = 0), differential relation (2.11) becomes the final relation 

p+g2[V+( - l ) i~o]=C 5 

(c5 is a constant). 
We draw attention to the fact that the system of necessary conditions for an extremum obtained above 

is not the sum of the necessary conditions for optimizing the upper and lower parts of the airfoil 
individually. The relation between the upper and lower contours is obtained by using the Weierstrass- 
Erdman conditions at the points E 1 and E 2. 

An analysis of the necessary conditions for an extremum shows that, as in [6], one must introduce 
an infinite number of points of discontinuity of the airfoil contour along the section ADi, bunching to 
the point A. However, it was pointed out in [6] that, in view of the accuracy of the calculations, it was 
sufficient to confine ourselves to considering discontinuities solely at the points D i. This will also be 
used later. 

2;. D E S C R I P T I O N  OF THE N U M E R I C A L  A L G O R I T H M  

To determine tile optimum airfoil numerically we propose an iterative process which is essentially a 
development of the numerical algorithm described earlier in [6]. 

The abscissa of the point M 1 is specified. The section Ix(A), x(M1)] is divided into n equal parts, we 
make the number Ok, the tangent of the slope of the shock wave to the x axis, correspond to each of 
the points xk (k = 1 , . . .  n) obtained, and we set up the shock wave AM1. From the known free stream 
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and the shock wave we use the method of characteristics [8] to calculate the flow in the region of influence 
of the lineAM1 and we distinguish the streamlineAD 1. We then choose certain negative angles of the 
sharp bend of the airfoil A01 and A02, by means of which we calculate the rarefaction flow in the region 
M1BIN1C1 and we set up the section of the shock wave MIC1. For an arbitrarily specified value of the 
stream function at the point G1 the section [~(G1), ~(N1)] is divided into nl equal parts, and at the 
points of division we arbitrarily choose values of the quantity v/u. This information is sufficient to deter- 
mine the characteristic NIG1 and the gas-dynamic quantities on it. Using the method of characteristics 
we solve Goursat's problem with data on N1B1 and NIG1 and we distinguish the streamline DIE1. By 
specifying the negative value of the angle of the sharp bend of the airfoil A03 at the point El, we calculate 
the flow in the rarefaction pencil GIEIP1. By using relation (2.10) we can determine the optimal 
characteristic P1B up to values of the stream function equal to v(A) and then separate the streamline 
E1B. Hence, the upper part of the airfoilAD1E1B and the flow parameters in the region R1 are known. 

We can similarly construct the lower part of the airfoilAD2E2B, i.e. specify the abscissa of the point 
M2, the shock waveAM2, the angles of the sharp bend of the airfoil A04, A05, A06, the value of the stream 
function ~ at the point G2, and the distribution of the quantity v/u along the line N2G2. 

The airfoil obtained, generally speaking, does not satisfy the closure condition (the coordinates of 
the point B along the sectionsADiE1B andAD~E2B are not the same) and the condition for the section 
E1E2 to be orthogonal to the chord AB. One can attempt to satisfy these conditions by choosing the 
values ofx(M2), ~(G2) and A0 6. 

The next step consists of solving the conjugate problem. On the characteristic G1B the Lagrange 
multipliers hi and h 2 are found from (2.7), while on the characteristic PiE1 they are found from (2.9). 
Then, in the region G1EIP 1 they are obtained by solving Goursat's problem. At the point E1 we introduce 
a discontinuity in the Lagrange multipliers of such a value that on approaching the point E 1 from the 
left along the airfoil the boundary condition (2.3) for h 2 is satisfied. Using the known distributions of 
the Lagrange multipliers along B1E 1 and EIG1, the method of characteristics is used to determine hi 
and h2 in the region NID1EIG 1. On the characteristic NIG1 we verify that condition (2.4) is satisfied. 
At the point G1 it holds by virtue of the choice of the multipliers h 1 and h 2. The n 1 arbitrariness in choos- 
ing the value of v/u on the characteristic N1G 1 enables it to be satisfied at the remaining n 1 points. In 
the region C1D1N1 the multipliers hl and h 2 are determined in the same way as in the region G1E1P1. 
We introduce a discontinuity of the Lagrange multipliers along the characteristic C1D1 such that condition 
(2.6) at the point C1 holds. The multipliers hi and h2 are determined in terms of their values on the 
lines AB 1 and D1M 1. The initial value of the discontinuity of the multipliers along the characteristic 
F1B1 is chosen from the same considerations as at the point El. 

For the region R2, the values of hi and h2 are found similarly. After solving the conjugate problem 
one verifies that the Weierstrass-Erdman conditions are satisfied. Generally speaking, they are not 
satisfied. One can endeavour to satisfy the Weierstrass-Erdman conditions by choosing the values of 
A01, A02, A04, A05, ~(G1) and A03. 

Finally, from the known fie!d of gas-dynamic quantities and the field of the Lagrange multipliers one 
can calculate the function E.'(~) for each of the individual streamlines. The shock wave is corrected 
until E.i(v) becomes equal to zero. All the calculations must then be carried out again, if necessary. 

The airfoil obtained by this procedure is the required optimum airfoil if the coordinates of the point 
B obtained, the length of the section E1E2, the lift force and the moment are equal to the specified 
values. If this does not occur, one can attempt to achieve it by choosing the values ofx(M1), 6[x(M1)], 
6Ix(M2)], 60, bto. When solving specific problems the iterative procedure described can be simplified by 
using the particular features of the problem. 

4. RESULTS OF CALCULATIONS 

The iterative algorithm described above was used to solve a number of particular problems. Before presenting 
the results we will consider the nature of the reflection of the discontinuity of the multipliers hi and h2 from the 
shock wave and the various solution schemes that follow from it. The value of the reflected discontinuity is found 
from the condition of continuity of the function E.i(¥) as one approaches the reflection point along the shock wave 
from the top and from the bottom. We will mean by the sign of the discontinuity the sign of the quantity Ah2-- 
the difference between the values of h2 from the left and from the right of the discontinuity. The signs of the 
discontinuity arriving at the shock wave and of the discontinuity reflected from it may be either the same or different. 
This depends on the free-stream velocity and the intensity of the shock wave at this point. All the points of the 
shock wave in the (free-stream velocity--shock-wave intensity) plane will consequently be split into points belonging 
to regions I and III (the sign of the reflected discontinuity is the same as the sign of the incident discontinuity) 
and region II (these signs are opposite) [6]. By equating hi and h2 to zero on the fight of the characteristic C~, 
we obtain that Eqs (2.7) define the value of the discontinuity of these multipliers along the characteristic C~. In 
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this case the discontinuity of the multipliers which propagates along the characteristic C~i  is a reflection from the 
shock wave at the point Ci of the discontinuity propagating along the characteristic CIB. 

Suppose we consider the problem of finding the symmetrical optimum airfoil, placed at zero angle of attack. In 
this case the point B lies on the x axis, and o0 and go are equal to zero. The value of v/u at the point B is negative, 
and hence the discontinuity of the Lagrange multipliers along the characteristic Cfl will also be negative. We choose 
the shock wave so that the parameters corresponding to it belong to region II. Then a discontinuity of positive 
sign will propagate along the characteristic CiDi, and the introduction of a negative angle of the sharp bend in the 
airfoil at the point D~ enables the appropriate Weierstrass-Erdman conditions to be satisfied. The discontinuity 
in the multipliers, introduced at the point Ei, will be positive, and on reflection from the shock wave at the point 
Li it should change sign. Consequently, the scheme for the solution should be such that an internal shock wave 
arrives at the point Li (or a centred compression wave with focus at the point Li). This considerably complicates 
the formulation of the problem and the calculations. If we do not introduce reflection of the discontinuity of the 
Lagrange multipliers from the shock wave at the point Li the function E.i(¥) will suffer a discontinuity at the point 
Li. By assuming this discontinuity to be small (this is in fact the case for chosen parameters of the problem), when 
carrying out the calculations we will require the function to vanish at those individual points where the shock wave 
is specified. This corresponds to "smearing" of the local discontinuity at the grid step. In the examples considered 
the reflected discontinuity at the point Di had a positive sign. Its value can be neglected to within the accuracy of 
these calculations. The value of the negative angle of the sharp bend of the airfoil at the point Di, as can be seen 
from the results presented below, is also small. The "smeared-out" sharp bend of the airfoil corresponds to the 
"smeared-out" sharp bend of the shock wave. The parts of the airfoil between the sharp bends, with the exception 
of the neighbourhood of the "smeared-out" discontinuity, are close to rectilinear. 

Below we present the parameters of the optimum symmetric airfoil at zero angle of attack (here x(B)/l = y(B)/l = O) 

w,  1,4 1,4 1,4 1,5 1.6 1,7 
x(/21 ) / l 0,0349 0,0798 O. 1203 O, 1392 0,0630 0.0873 
Y(B t ) l l  0,0012 0,0057 0,0134 0.0214 0.0047 0.0102 
x (E i ) l l  0,5259 0,5553 0.5891 0.63t7 0.5531 0.5941 
y(E; ) I 1 0.0193 0.0433 0.0668 0.0988 0,0408 0.0669 
T/l, % 3,9 8,7 ! 3.4 19,8 8,2 13,4 
Cx 0,0025 0.0 ! 28 0.0295 0.0533 0,0082 0.0181 
A01 + A02 0,0002 0.0012 0.0023 0.0045 0.0007 0.0009 
A03 0.0696 O, 1742 0.2742 0.4311 0, ! 663 0.2545 

In Fig. 2 we show the upper half of the optimum airfoil obtained with a thickening of T/l = 19.8%. The constants 
(?4, which occur in relations (2.8) and which characterize the discontinuity of the multipliers, have the following 
values for this profile:: cE,h -- 0.4744, Cc~ = 0.0079, cn~l = 0.0001, cL QI = -0.0149. 

In the case of asyrametrical airfoils at non-zero angIe of ' attack, when carrying out the calculations the initial 
shock wave was cho,,en to be in the neighbourhood of the boundary of regions II and III, which enabled us to 
neglect the value of the discontinuity of the multipliers at the point Ci and not to introduce a sharp bend in the 
airfoil at the points Di. The factors o0 and go were chosen to be non-zero here. 

The following are the parameters of the optimum airfoils obtained: 
(a) airfoil movements not specified, go = 0 

w. 1.828 1,828 1,816 1.828 
y -0.0029 -0.0233 0,0366 0.019 I 
x( E l ) / 1 0.5136 0.5976 0,6201 0.5253 
y(E l ) / 1 0.0025 0.0272 0,0457 0.0036 
x(E 2 ) / l 0.5136 0.5988 0.6157 0,524 I 
y( E 2 ) / 1 0.0124 0.0359 0.0502 0.0 i 33 
x(B)/l 1.0000 0.9997 0.9993 0.9998 
y(B)/I 0.0025 0.0235 -0.0368 -0.0193 
T/I, % 1.5 6.3 9.6 1,7 
Cx. 0.0004 0.0044 0.0098 0,0007 
Cr -0,0026 -0,0148 0.0220 0.0155 
CM -0.0046 -0,0 i 37 0.0166 0.0087 
Oo -0.3 -0.3 0.15 0,35 
A03 0.0181 0.5345 0.2917 0.0525 
A06 0.0502 0.2064 0. I 184 0.0128 

A B 
Fig. 2. 
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(b) airfoil movements specified, P0 ~ 0, and o0 ffi 0.15 

w. 1,816 1.816 1.816 1,816 !.816 1.816 
3' 0.0335 0,0326 0,0307 0,0293 0.0279 0.0264 
z(E I ) / I 0.6230 0,6237 0,6189 0,6273 0,6287 0,6302 
y( El ) / I 0.0482 0,0482 0.0490 0.0508 0,0520 0,0521 
x(E 2 ) / l 0,6196 0.6203 0,6167 0.6250 0,6265 0,6279 
y(E 2 ) / I 0.0493 0,0494 0,0479 0,0485 0,0486 0,0476 
z(/;Tl 0,9994 0.9995 0.9996 0,9996 0,9996 0.9997 
y(B)/I -0,0336 -0.0325 -0,0301 -0,0293 -0.0283 -0.0261 
T/l ,  % 9.8 9,8 9,9 9.9 10,0 10,0 
Cx 0,0095 0.0095 0.0098 0,0099 0,0099 0.0100 
Cr 0,0194 0,0187 0,0169 0,0161 0.0147 0,0134 
CM 0,0149 0,0145 0.0135 0.0131 0,0124 0,0117 
g0 0.2 0,3 0.4 0.5 0,6 0.7 
A03 0,3273 0,2988 0.3016 0,3038 0,3064 03086 
A06 0,1220 0,1204 0.1231 0,1236 0,1245 0.1254 

If the moment of the airfoil is not specified, the parts of the profile between the sharp bends are close to rectilinear. 
If the moment of the airfoil is specified, the parts between the sharp bends become bent. The bending is particularly 
pronounced along the part D~i. In Fig. 3 we show the distribution of v/u along the length of the projection of the 
chord onto the free stream direction for the airfoil, obtained for ;to = 0.7, and in Fig. 4 for the airfoil itself. 

In the above calculations the gas was assumed to be perfect with an adiabatic index x = 1.4. The function E~(¥) 
at points on the shock wave in the calculated examples had a value of the order of 10 -4, which corresponds to the 
accuracy of the numerical method of characteristics for the chosen step. All the linear dimensions are normalized 
to the length of the chord I and Cx = X/(lp.w2), Cy = Y(lp**w2), C~t = M/(12p.w2). 
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